اثر نیترات یا آمونیوم بر رشد رویشی و غلظت کلروفیل a و b در دو گیاه کاهو و اسفناج کشت شده در محیط هیدروپونیک

واحد باقری، حمید رضا روستا، زهرا محمدی، فاطمه قطبی و زهرا احمدی رفسنجان، دانشگاه ولیعصر (عج) رفسنجان، دانشکده کشاورزی، گروه علوم باغبانی

بیشتر گونه های گیاهی نسبت به غلظت های بالای آمونیوم حساسند. در این آزمایش حساسیت دو گیاه کاهو و اسفناج به آمونیوم مورد بررسی قرار گرفت. در مقایسه با نیترات، آمونیوم در غلظت ٥ میلی مولار سبب کاهش رشد هر دو گونه شد. کاهش رشد در گیاهانی که با آمونیوم تغذیه می شوند در اثر عواملی مانند بی نظمی در احیاء آمونیوم، کاهش pH، اثرات سمیت آمونیوم آزاد، کمبود مواد غذایی مثل پتاسیم، کلسیم، منیزیم و محدودیت کربوهیدرات ناشی از مصرف بیش از حد قندهای محلول برای آسیمیلاسیون آمونیوم است. مقدار کلروفیل a و b در گیاهان اسفناج و کاهوی تغذیه شده با آمونیوم بسیار بیشتر از گیاهان تغذیه شده با نیترات بود. اختلاف معنی داری بین دو گیاه اسفناج و کاهو در میزان کلروفیل a و b

مقدمه

اکثر گیاهان از نیترات و آمونیوم بعنوان منبع نیتروژن استفاده می کنند. ولی بیشتر گیاهان نیترات را به آمونیوم ترجیح می دهند، اگرچه کاربرد همزمان این دو ترکیب اثرات مفیدی بر رشد و محصول گیاهان دارد. میزان اثربخشی هر کدام از آن ها بر رشد گیاه و میزان جذب مواد غذایی به گونه گیاهی و نسبت نیترات به آمونیوم دارد. برای مثال رشد مطلوب ریشه های گوجه فرنگی در خاکی با نسبت نیترات به آمونیوم ۱: ۳ بدست میآید و اگر غلظت آمونیوم بیش از حد بالا باشد از رشد جلوگیری میکند، در صورتی که کاج میلاد به آمونیوم پاسخ مثبت میدهد. هدف از این مطالعه بررسی میزان حساسیت دو گیاه کاهو و اسفناج به آمونیوم بود.

مواد و روشها

بذور کاهو (.Lactuca sativa L.) و اسفناج (.Spinacea oleracea L.) در گلدانهای سفالی حاوی مخلوط پرلایت، ماسه و خاک رس کشت شدند. بعد از دو هفته نشاها در مرحله دو برگی به داخل گلدانهای چهار لیتری حاوی محلول هوادهی شده انتقال یافتند، به طوری که در هر گلدان ٤ گیاه کشت شد. به گلدانها عناصر ماکرو شامل مونوفسفات پتاسیم (۲/۰ میلی مولار) سوافات پتاسیم (۲/۰ میلی مولار)، سولفات منیزیم (۳/۰ میلی مولار)، کلرید سدیم (۱/۰ میلی مولار) اضافه شد. همچنین به گلدانها عناصر میکرو به صورت کلات آهن (Fe-EDTA ۰۰ میکرو مولار)، سوافات منگنز (۷ میکرو مولار)، کلرید روی (۷/۰ میکرو مولار)، سولفات مس (۸/۰ میکرو مولار)، اسید بوریک (۲ میکرو مولار)، مولیدات سدیم (۸/۰ میکرو ولار) و نیتروژن به صورت نیترات کلسیم یا سولفات آمونیوم در غلظت ۵ میلی مولار اضافه شد. محلول گلدانها هر دو هفته یکبار نیتروژن به صورت نیترات کلسیم یا سولفات آمونیوم در غلظت ۵ میلی مولار اضافه شد. محلول گلدانها هر دو هفته یکبار تعویض شده و برای تنظیم PH از محلول کربنات کلسیم استفاده می شد. گیاهان پس از دو ماه رشد به طور کامل از گلدانها برداشت شدند و قسمتهای هوایی و ریشه از هم جدا و توزین شدند. به منظور اندازه گیری کلروفیل قسمتی از نمونه ها با

نتايج و بحث

آمونیوم میتواند به طور مستقیم از محیط کشت توسط گیاهان جذب شود. گیاهان به گونه های حساس و مقاوم به آمونیوم تقسیم می شوند. حساسیت دو گیاه کاهو واسفناج به آمونیوم به وسیله پژوهش حاضر و با مشاهده جلوگیری از رشد با آمونیوم به عنوان تنها منبع نیتروژن نشان داده شد. برخی از ویژگی های مرفولوژیکی گیاه تحت تاثیر وضعیت نیتروژن قرارگرفت. وقتی که آمونیوم به عنوان تنها منبع نیتروژن استفاده شد در مقایسه با –NO3 نسبت ریشه به اندام هوائی را کاهش داد. مشاهده شددر گیاهان اسفناج و کاهوی تغذیه شده با آمونیوم میزان کلروفیل a و ط بیشتر از گیاهان تغذیه شده با نیترات بود. ولی اختلاف معنی داری در میزان کلروفیل a و d در دو گیاه اسفناج و کاهو وجود نداشت.

منابع

Beritto DT. And Kronzucker, HJ. (2002) NH4+ toxicity in higher plants. J. Plant Physiol. 159:567-584.

Roosta H.R. and J.K. Schjoerring. 2007. Effects of ammonium toxicity on nitrogen metabolism and elemental profile of cucumber plants, J. of plant nutr. 30:1933-1951.

The effects of ammonium or nitrate nutrition on vegetative growth and chlorophyll a and b in lettuce and spinach in hydroponic system

Vahed Bagheri, Hamid Reza Roosta, Zahra Mohammadi, Fatemeh Ghotbi and Zahra Ahmadi

Dept. of Horticulture, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan

Abstract

The most of the plant species are sensitive to high ammonium concentrations. In this experiment the sensitivity of lettuce and spinach to ammonium was investigated. In comparison to nitrate, ammonium at 5 mM reduced the growth of both species. Ammonium toxicity in plants has been attributed to factors such as futile transmembrane cycling of NH_4^+ , NH_4^+ -induced disorders in pH regulation, deficiency of mineral cations, and carbohydrate limitation due to excessive consumption of soluble sugars for NH_4^+ assimilation. Chlorophyll a and b were higher in ammonium-fed than nitrate-fed plants. There was no difference between lettuce and spinach in leaf chlorophyll a and b content.

Keywords: Lettuce, spinach, hydroponics, nitrate, ammonium, chlorophyll