تغییر در سیستم رویشی و فیزیولوژیکی گیاه دارویی نعناع فلفلی بوسیله اسید آسکوربیک در شرایط کشت بدون خاک

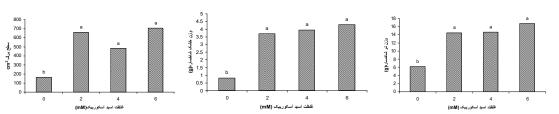
ساسان علی نیائی فرد (۱)، عبدالحسین رضائی نژاد (۲)، مریم سیفی کلهر (۳)، احمد شهلایی (۴)، امین علی نیائی فرد (۵)

۱- عضو باشگاه پژوهشگران جوان دانشگاه آزاد اسلامی واحد علوم و تحقیقات، ۲- هیئت علمی دانشگاه لرستان، ۳- کارشناس ارشد سازمان تعاون روستایی استان بیوتکنولوژی، ۴ - دانشجوی دکتری باغبانی دانشگاه آزاد اسلامی واحد علوم و تحقیقات، ۵- کارشناس ارشد سازمان تعاون روستایی استان لرستان

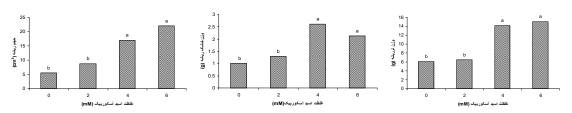
اسید آسکوربیک دارای نقش مهمی در بسیاری از فرایندهای پویای گیاهی می باشد. به منظور مطالعه تأثیر ماده آنتی اکسیدانت اسید آسکوربیک روی گیاه دارویی نعناع فلفلی تحت شرایط کشت بدون خاک آزمایشی در گلخانه دانشکده کشاورزی دانشگاه لرستان انجام شد. این آزمایش به صورت طرح بلوکهای کامل تصادفی با چهار تکرار اجرا شد. تیمارها شامل غلظتهای ۰، ۲، ۶ و ۲ میلی مولار اسید آسکوربیک بودند. نتایج آزمایش نشان داد که غلظتهای مختلف اسید آسکوربیک باعث افزایش وزن تر و وزن خشک شاخساره و سطح برگ نسبت به شاهد می شوند. از طرفی غلظتهای ۶ و ۲ میلی مولار اسید آسکوربیک باعث افزایش مقدار وزن تر ریشه، وزن خشک ریشه و حجم ریشه نسبت به غلظتهای و ۲ میلی مولار اسید آسکوربیک در این آزمایش گردیدند. همچنین غلظتهای مختلف اسید آسکوربیک باعث بهبود خصوصیات فتوسنتزی از قبیل فتوسنتز خالص، تعرق و مقدار کلروفیل نسبت به شاهد شدند. با توجه به این نتایج می توان از ماده آنتی اکسیدانت اسید آسکوربیک جهت بهبود خصوصیات رویشی و فیزیولوژیکی گیاه دارویی نعناع فلفلی استفاده نمود.

مقدمه

اسید آسکوربیک (Asc) جزء ویتامینهای محلول در آب می باشد. از نظر ساختمان شیمیایی اسید آسکوربیک شباهت زیادی به ساختمان گلوکز دارد. از نظر شیمیایی از مشتقات قندهای ساده (آلدوزها) بوده و بیوستنزآن از گلوکز وگالاکتوز و یا مشتقات آنها انجام می گیرد (صفری، ۱۳۸۲). Asc در غلظتهای میلی مولار در برگها یافت می شود و دارای نقش مهمی در تحمل گیاه به تنشها به عنوان جزئی از سیستم آنتی اکسیدانت می باشد. Asc در تنظیم فتوسنتز، توسعه سلول، طویل شدن ریشه و انتقال الکترون در عرض غشاء سهیم می باشد. (Guo et al., 2005) شواهد نشان می دهد که Asc و آسکوربات اکسیداز موجود در آپوپلاست در تقسیم سلول و گسترش سلول نقش مهمی دارند (Pignocchi and Foyer, 2003). آسکوربات آپوپلاستی موجب اثر اکسیداسیون Asc ایجاد می شود باعث بزرگ شدن سلول می شود، افزایش در مقدار دهیدرو آسکوربات آپوپلاستی موجب گسترش سلول از طریق شل شدن دیواره سلول می شود (Pignocchi and Foyer, 2003). علاوه بر لاشه خواری، Asc در تولید α توکوفرول و چرخه زاکسانتین نیز نقش دارد همچنین در سطح تیلاکوئید کلروپلاست در حذف α (Grene, 2002).

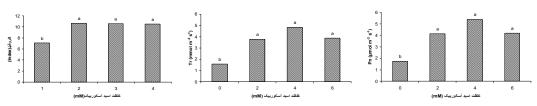

مواد و روشها

آزمایش به صورت گلخانهای با دمای متوسط روزانه ۳۵۰۳ و شبانه ۳۵۰ درجه سانتیگراد در سال ۱۳۸۷ در دانشکده کشاورزی دانشگاه لرستان انجام شد. ظروف کاشت شامل گلدانهای ۵ لیتری بودند و از پرلایت به عنوان محیط کشت استفاده شده بود. نشاءهای ریشهدار شده نعناع فلفلی از کلینیک گیاهان دارویی جهاد دانشگاهی دانشگاه شهید بهشتی تهیه شدند. در این آزمایش اسید اسکوربیک در غلظتهای ۰، ۲، ۶ و ۲ میلی مولار به صورت طرح بلوکهای کامل تصادفی با چهار تکرار بر


روی نشاهای کشت شده نعناع فلفلی دو هفته و ٤ هفته بعد از کشت به صورت محلول پاشی استفاده گردید. از محلول غذائی هوگلند برای تغذیه گیاهان استفاده شد. جهت اندازه گیری سطح برگ با دستگاه اسکنر متصل به کامپیوتر و صفات مربوط به فتوسنتز با استفاده از دستگاه فتوسنتز متر قابل حمل (HCM-100, Walls, Mess-undergeltechnik, Germany) مورد سنجش قرار گرفت. برای اندازه گیری کلروفیل برگها از دستگاه کلروفیل سنج SPAD استفاده شد. گیاهان پس از برداشت، با ترازوی دیجیتال توزین شدند و سپس در دستگاه آون در دمای ۸۰ درجه به مدت ٤٨ ساعت قرارگرفته و پس از ثابت شدن وزن، با ترازوی دیجیتالی مجدداً توزین گردیدند. برای اندازه گیری حجم ریشه از استوانه مدرج استفاده شد.

نتایج و بحث

نتایج آزمایش نشان داد که: در مورد صفات رویشی مثل وزن تر و وزن خشک شاخساره و سطح برگ تفاوت معنی داری بین غلظتهای ۲، ۶ و ۲ میلی مولار اسید آسکوربیک مشاهده نمی شود ولی تیمار غلظتهای مختلف اسید آسکوربیک تفاوت معنی داری را با شاهد نشان دادند (شکل ۱، ۲ و ۳).



شکل ۱، ۲ و ۳- تأثیر غلظتهای مختلف اسید آسکوربیک بر وزن تر و وزن خشک شاخساره و سطح برگ از طرفی غلظتهای ٤ و ٦ میلی مولار اسید آسکوربیک باعث افزایش مقدار وزن تر ریشه، وزن خشک ریشه و حجم ریشه نسبت به غلظتهای ۰ و ۲ میلی مولار اسید آسکوربیک شدند (شکل ٤، ٥ و ٦).

شکل۴، ۵ و ۶- تأثیر غلظتهای مختلف اسید آسکوربیک بر وزن تر، وزن خشک و حجم ریشه

در مورد صفات فتوسنتزی مثل فتوسنتز خالص، تعرق و مقدار کلروفیل تفاوت معنیداری بین غلظتهای ۲، ۶ و ۳ میلی مولار اسید اَسکوربیک مشاهده نمیشود ولی تیمار غلظتهای مختلف اسید اَسکوربیک تفاوت معنیداری را در این مورد با شاهد نشان دادند (شکل ۷/ ۸ و ۹).

شکل۷، ۸ و۹- تأثیر غلظتهای مختلف اسید آسکوربیک بر فتوسنتز خالص، تعرق و کلروفیل

توانایی دادن الکترون در دامنه گسترده ای از واکنشها باعث شده است که اسید آسکوربیک به عنوان یک ترکیب سمیت زدا در فاز آبی باشد، همچنین از طریق تولید توکوفرول از رادیکال توکوفروکسیل از غشاء محافظت کند و در تنظیم تقسیم سلولی و توسعه سلولی نیز نقش ایفا می کند (Blokhina et al., 2002). اسید آسکوربیک در سیتوزول، کلروپلاست، واکوئل، میتوکندری و ماتریکس خارج سلولی وجود دارد. غلظت اسید آسکوربیک واکوئلی و سیتوزولی زیاد می باشد، غلظتهای زیاد اسید آسکوربیک نیاز بالای به آن را برای لاشه خواری گونه های اکسیژن فعال شده نشان می دهد (Potters et al.,2002).

ىنابع

صفری، م. ۱۳۸۲. مبانی بیوشیمی کشاورزی. چاپ دوم. انتشارات دانشگاه تهران.

Guo, Z., tan, H., Zhu, Z., Lu, S. and Zhou., B. 2005. Effect of inter mediates on ascorbic acid and oxalate biosynthesis of rice and in relation to its stress resistance. Plant Physiol. Biochem. 43: 955-962.

Pignocchi, C. and Foyer, C.H. 2003. Apoplastic ascorbate metabolism and its role in the regulation of cell signaling. Current Option in Plant Biology. 6: 379-389.

Grene, R. 2002. Oxidative stress and accumulation mechanisms in plant. Am. Soc. Plant Biol.

Blokhina, O., Virolainen, E. and Fagerstedt, K.V. 2002. Antioxidants, oxidative damage and oxygen deprivation stress: A Review. Annuals of Botany. 91: 179-194.

Potters, G., de-Gara, L., Asard, H., Horemans, N., 2002. Ascorbate and glutathione: Guardians of cell cycle, partners in crime? Plant Physiology and Biochemistry. 40: 537-548.

Changes in vegetative and physiological systems of peppermint by using of ascorbic acid under soilless condition

S. Aliniaeifard ^{a,*}, A. Rezaei-nejad ^b, M. Sifi-Kalhor ^c, A. Shahlaei ^d, A. Aliniaeifard ^e
^{a,*}Member of young researchers club of science and research campus of Islamic azad university, Tehran, Iran ^b Faculty of Agriculture, lorestan university, ^c Msc of biotechnology, ^d PhD student of science and research campus of Islamic azad university, ^e rural cooperation organization of lorestan province

Abstract

Ascorbic acid has a vital role in lots of plant dynamic processes. Due to study the effects of ascorbic acid on peppermint under soilless condition an experiment was conducted in faculty of agriculture in lorestan university. The experiment was performed based on completely randomized block design with four replications. The treatments were used in this experiment include four ascorbic acid concentrations (0, 2, 4 and 6 mM). results show that different concentrations of ascorbic acid caused significant increase in shoot fresh weight, shoot dry weight and leaf area as compared to control, in the other hand 4 and 6 mM concentrations of ascorbic acid caused to considerable induction in root fresh weight, root dry weight and root volume as compared to 0 and 2 mM concentrations of ascorbic acid. Likewise different concentrations of ascorbic acid caused significant induction in some Photosynthetic characteristics such as: net photosynthesis, transpiration and chlorophyll as compared to control. By attention to results of this experiment exogenous application of ascorbic acid is advisable for peppermint under soilless condition.