ارزيـابى وضـعيت زيست فراهمى آلومينيوم موجود در خاك برای كيـاه چاى

رامين سلماسى
عضو هيئت علمى مركز تحقيقات كشاورزى و منابع طبيعى تبريز

 استفاده شد. سپس غلظت آلومينيوم در برگ هاى چاى و نمونه هاى خاى عصاره گيرى شده بوسيله دستگاه جذب اتمى اندازه گيرى شد. يافته هاى اين پ夫وهش شان داد كه روش آلومينيوم عصاره گيرى شده با محلول r•••• مولار كلرور كلسيم، بهترين

 خاك به بر گ هاى چای شناخته شد.

مقدمه

 (Chenery بر اين دلالت مى كند كه ميزان آلومينيوم بافت هاى كياهي
 آلومينيوم زيست فراهم كه مورد قبول واقع شده اند شامل عصاره گيرى با محلول ا ٪/ و (• / مولار كلرور مس مى باشند.

 خاك.

مواد و روش ها

 ميلى مترى گذر انده شدند و جه

 محلول كلرور كلسيم r٪/• مولار براى عصاره گيرى آلومينيوم قابل دسترس نمونه هاى خاك استفاده شد. اندازه گيرى آلومينيوم

كل خاى در نمونه هاى خاك و بر گی گرفته شده، با استفاده از مخلوط دو اسيد كلريدريى و و پر كلريك انجام شد. در نهايت غانظت

نتايج و بحث

ويز گی هاى خاكى ها و توزيع آلومنيوم هاى كل و محلول در خاى خاى ها ها

 سرعت كاهش مى يابد.

 ارتباط بين آلومينيوم محلول در خاك ها و آلومينيوم بر گ هاى چایى

 (Hume

 در صورتى كه بخواهيم بين جذب الومينيوم توسط گياه چاى و غلظت محلول اين عنصر در خاى ها، معادله ایى بنويسيم، معادلـه ركرسيون خطى نوشته شده به اين صورت مى باشد:

جدول شماره ا．ويزگى هاى خاك هاى مورد استفاده

آلومينيوم محلول	آلومينيوم كل	ظرفيت تبادل كاتيونى	درصد	درصد مواد آلى	اسيديته	شماره باغات چای
M	MrN	$1 \cdot / \varepsilon$	1%	Y／．	0／1	1
or	そと／入	19／9	r ．	0／．	そ／	r
r 。	£0／＾	Y／T／r	rV	M／Y	£／7	r
147	r7／．	$1 \varepsilon / Y$	ε	r / Λ	ε / \uparrow	ε
09	£0／7	11／7	r	ε / Γ	ε / V	0
Y／O	71 N	H／．	r7	ε / Υ	7 ．	7
r／r	7r／r	YT／r	rr	Y／Y	$0 / \varepsilon$	V
7／1	09／r	$Y 1 / \varepsilon$	ry	Y／V	0／7	\wedge
IV	O\＆／乏	Yr／T	Yr	$\mu /$.	$\varepsilon / 9$	9
r	$\varepsilon \cdot / \varepsilon$	19／4	r 。	μ / ε	$\varepsilon /$ •	1.
7.	$0 \varepsilon / Y$	rr／T	$1 \wedge$	$\mathrm{V} /$ •	₹／0	11
74	ET／＊	19／0	V	r / Λ	ε / κ	IT
0 ．	rv / q	1V／0	1.	ε / \uparrow	$\varepsilon / \varepsilon$	14

جدول شماره 「．ضر ايب همبستگى براى روابط بين آلومينيوم محلول در خاك ها، بر گ هاى چاى و ويزگى هاى خاى

آلومينيوم در بر گ هاى رسيده	آلومينيوم در بر گ هاى مسن	ظرفيت تبادل كاتيونى	رس	مواد آلى	اسيديته	
－／77	－／VV	$-\cdot N r$	غير معنى دار	غير معنى دار	－／＾0	آلومينيوم محلول
－	－	غير معنى دار	－•／01	غير معنى	－．／79	آلومينيوم در بر گ هاى مسن
－	－	غير معنى	غير معنى دار	$\cdot / 07$	－／VA	آلومينيوم در بر گ هاى رسيده

19／• ）
（N／0）

$$
\begin{aligned}
& \text { اين نتايج نشان مى دهند كه ميزان آلومينيوم محلول كه توسط محلول كلرور كلسيم Y•• مولار اندازه گيرى مى گردد، عصاره گيـر } \\
& \text { مناسبى برای پيشگويى جذب آلومينيوم توسط گیاه چاى مى باشلد و مى تواند به عنوان شكل قابل دسترس اين عنصر در نظر گرفـه } \\
& \text { شود. } \\
& \text { رابطه بين غلظت آلومينيوم در بر گ هاى مسن و رسيده و آلومينيوم قابل عصاره گيرى با كلـرور كلـسيم Y •• مـولار خطـى مـى } \\
& \text { باشد. بنابراين ميزان آلومينيوم محلول در خاى ها ، بهترين تخمين آلومينيوم قابل دسترس پاى بشمار مى رود. } \\
& \text { غلظت آلومينيوم محلول در خاى ها، با كاهش pH خاى افزايش مى يابد. اين رابطه غير خطى بوده، موقعى كه pH }
\end{aligned}
$$

كننده جذب اين عنصر از خاى به داخل گیاه چاى بشمار مى رود.

Brookins, D. G.,1988. Diagrams for geochemistry. Springerverlag, Berlin.
Chennery, E. A., 1955. A preliminary study of Aluminum the tea bush. Plant and Soil, 6:174-200.
Hsu, P. H., Rich, C. I., 1960. Al fixation in a synthetic cation exchanger. SSSA, 24:21-25.20
Klute, A., D. R. Nielson, and R. D. Jackson. 1965. Methods of soil analysis, Part 2. 2ed, Agronomy Monog. 9, SA, Madison, WI.
Page, A. L. Methods of soil analysis, Part 1. 1965. 2ed, Agronomy Monog. 9, ASA, Madison, WI.

Abstract

In order to understand the relationship between soluble form of Al in soils and the uptake of Alinto tea plants, tea leaves and soils were collected from 13 tea gardens in the east of China. The Al concentration measured in the tea leaves was found to be best predicted by available Al extracted by $.02 \mathrm{M} \mathrm{CaCl}_{2}$. The relation is linear, with a correlation coefficient of .77. The Al content of tea leaves increases with a decrease of soil pH . The relation is nomnlinear, with a a marked increase in leaf Al content for soil s for $\mathrm{pH}<5$. Soil pH was identified that controls the uptake of Al from soil into the tea leaves.

