اثرات تنش شوری بر جوانه زنی، رشد گیاهچه و تجمع یونهای معدنی در سیاه دانه

محدثه شمس الدین سعید (۱) ، اصغر رحیمی (۲) و مرجان ابراهیمی (۳)

۱- کارشناس ارشد زراعت دانشگاه ولیعصر رفسنجان، ۲-استادیار گروه زراعت و اصلاح نباتات دانشگاه ولیعصر رفسنجان، ۳- دانشجوی کارشناسی زراعت دانشگاه ولیعصر رفسنجان

به منظور ارزیابی واکنش اجزای جوانه زنی (سرعت جوانه زنی، درصد جوانه زنی و رشد هتروتروفیک و تجمع یونهای معدنی) سیاه دانه به تنش شوری آزمایشی در قالب طرح کاملا تصادفی در چهار تکرار در سال ۱۳۸۷ در آزمایشگاه تحقیقاتی دانشکده کشاورزی دانشگاه ولیعصر رفسنجان اجرا گردید. سطوح شوری به کار برده شده شامل ۰، ٤، ۸، ۱۲ و ۱۲ دسی زیمنس بر متر نمک کلرید سدیم بودند. نتایج تجزیه واریانس داده ها نشان داد سطوح مختلف شوری اثر بسیار معنی داری را بر درصد جوانه زنی، سرعت جوانه زنی، طول ریشه چه، طول ساقه چه، وزن خشک ریشه چه، وزن خشک ساقه چه، غلظت یونهای سدیم، پتاسیم و نسبت پتاسیم به سدیم داشتند. با افزایش شوری کلیه صفات مذکور (به استثنای غلظت سدیم و پتاسیم) کاهش یافتند به گونه ای که بالاترین میزان هر یک از صفات متعلق به تیمار شاهد و کمترین آن متعلق به تیمار ۱۲ دسی زیمنس بر متر بود و تنها غلظت یون سدیم با افزایش شوری افزایش یافت. همچنین یون پتاسیم تا شوری ۸ دسی زیمنس افزایش و سپس کاهش نشان داد. با توجه به نتایج بدست آمده به نظر می رسد گیاه سیاه دانه در مرحله جوانه زنی تا شوری ۱۲ دسی زیمنس را تحمل می نمان داد. کاهش در درصد جوانه زنی روبرو خواهد شد و دارای معلق به تیمار شاهد و کمترین آن متعلق به تیمار ۱۲ دسی زیمنس بر متر بود و تنها ملطت یون سدیم با افزایش شوری افزایش یافت. همچنین یون پتاسیم تا شوری ۸ دسی زیمنس افزایش و سپس کاهش نشان داد. معطق یون میزان می زمان می رسد گیاه سیاه دانه در مرحله جوانه زنی تا شوری ۱۲ دسی زیمنس را تحمل می نماید و

مقدمه

جنس Nigella از خانواده Ranunculaceae در ایران حدود ۸ گونه علفی یکساله و چند ساله دارد (۱ و ٤). دانه های گیاه سیاه دانه در طب سنتی ایران از قدیم الایام استفاده می شده و برای این دانه ها خواصی مانند شیر آور، ضد نفخ، مسهل و ضد انگل قایل هستند. Nigella sativa گونه ایست که به طور طبیعی در نقاط مختلف ایران به عمل می آید. به علاوه در بعضی نقاط به میزان فراوانی کشت می شود (۱ و ٤). گیاه سیاه دانه به کمبود آهن و خاک های ضعیف و شور حساس می باشد. مجموع مناطقی که در جهان تحر در او ٤). گیاه سیاه دانه به کمبود آهن و خاک های ضعیف و شور حساس می باشد. مجموع مناطقی که در جهان تحت تاثیر شوری قرار دارند به طور مداوم در حال افزایش می باشند، ولی مطابق بر آوردهای انجام شده حدود ۰۰ درصد اراضی دنیا که معادل سه برابر مساحت زیر کشت گیاهان زراعی می باشد را تشکیل می دهند (۲). بعضی از محققین اعتقاد دارند که حساسیت به شوری به هنگام جوانه زنی و ابتدای رشد گیاهچه مشاهده می شود (۵). قدرت یک بذر در جوانه زنی و دراند که حساسیت به شوری به هنگام جوانه زنی و ابتدای رشد گیاهچه مشاهده می شود (۵). قدرت یک بذر در جوانه زنی و دراند که حساسیت به شوری به می باشد در اند به طور مداوم در حال افزایش می باشد در از شور کمان می دهند (۲). بعضی از محققین اعتقاد دارند که حساسیت به شوری به هنگام جوانه زنی و ابتدای رشد گیاهچه مشاهده می شود (۵). قدرت یک بذر در جوانه زنی و دارند که حساسیت به شوری به هنگام جوانه زنی و ابتدای رشد گیاهچه مشاهده می شود (۵). قدرت یک بذر در جوانه زنی و رشد محققین اعتقاد دارند که حساسیت به شوری بر جوانه زنی و رشد گیاهچه ای را کاهش درصد و سرعت جوانه زنی و همچنین کاهش رشد ریشه معیدی از محققین اعتقاد معقین دارند کیا هو می شود (۵). قدرت یک بذر در جوانه زنی و معدی په در می شود می باشد. محققین محقین دارند کی هر می شردی می شود و می دانه زی و می در دارای ظرفیت ژنتیکی لازم برای تحمل به شوری می باشد. محققین معتقین معتقین معقین در می شودی (۳ و ۵).

در ایران در سالهای اخیر کشت گیاهان دارویی از جمله سیاه دانه مورد توجه قرار گرفته است . با توجه به وجود مشکل شوری آب و خاک در بیشتر مزارع مناطق خشک این آزمایش این با هدف بررسی اثرات تنش شوری بر روی جوانه زنی سیاه دانه انجام گردید.

مواد و روش ها

به منظور ارزیابی واکنش اجزای جوانه زنی (سرعت جوانه زنی، درصد جوانه زنی و رشد هتروتروفیک و تجمع یونهای معدنی) سیاه دانه به تنش شوری آزمایشی در قالب طرح کاملا تصادفی در چهار تکرار در سال ۱۳۸۷ در آزمایشگاه تحقیقاتی دانشکده کشاورزی دانشگاه ولیعصر رفسنجان اجرا گردید. سطوح شوری به کار برده شده شامل ۱۰ ٤، ۲۰ ۱۲ و ۱۲ دسی زیمنس بر متر نمک کلرید سدیم بودند. بذور، پس از انتخاب بذرهای هم اندازه، با هیپوکلریت سدیم ۱۰ درصد به مدت ۳ دقیقه ضدعفونی شده و سپس ۳ تا ٥ بار با آب مقطر شسته شدند. تعداد ٥٠ عدد از این بذرها به هر یک از پتری دیش های استریل با قطر ۹ سانتی متر که حاوی کاغذ واتمن بودند، منتقل گردید. به هر پتری دیش ۱۰ میلی لیتر آب مقطر یا محلول کلرید سدیم با هدایت الکتریکی ٤، ۲۰ ۲۱ و ۱۲ دسی زیمنس بر متر، بسته به تیمار افزوده شد. پتری ها در اتاقک کشت و در دمای ۲۰ درجه سانتی گراد به مدت ۳ روز قرار داده شدند و تعداد بذور جوانه زده هر روز تا روز سیزدهم مورد شمارش قرار گرفتند. بذوری جوانه زده و ساقه چه و روز قرار داده شدند و تعداد بذور جوانه زده هر روز تا روز سیزدهم مورد شمارش قرار گرفتند. بذوری جوانه زده و ساقه چه و ریشه چه جهت سنجش پارامترهای مورفولوژیکی از یکدیگر جدا شدند. طول ساقه چه از پتری دیش خارج کرده و ساقه چه و ریشه چه جهت سنجش پارامترهای مورفولوژیکی از یکدیگر جدا شدند. طول ساقه چه از یقه تا جوانه انتهایی و طول ریشه چه از در میزه می مانه و میلی متر یا بیشتر بود. روز سیزدهم ۵ و درن خشک ساقه چه و ریشه چه بعد از خشک شدن نمونه ها در آون در ریشه چه جهت سنجش پارامترهای مورفولوژیکی از یکدیگر جدا شدند. طول ساقه چه از یقه تا جوانه انتهایی و طول ریشه چه از دمی مان که درجه سانتیگراد به مدت ٤٨ ساعت، با استفاده از ترازوی دیجیتال دقیق اندازه گیری شدند. برای اندازه گیری مون خشک شدن د و با استفاده از میلی می گرای معدانی معدی ما ساعت، با استفاده قرار گرفتند. جهت اندازه گیری غلظت عناصر معدنی سدیم و پتاسیم نمونه ما پس از سوزاندن خشک در اسید کلریدریک هضم و سپس با آب مقطر به حجم ۱۰۰میلی لیتر رسانده شدند و با استفاده از دستگاه فلیم فتومتر غلظت یونهای سدیم و پتاسیم اندازه گیری شاطت به مونم بر ماند شدند و با استفاده از

درصد جوانه زنی از رابطه ۱ محاسبه گردید MG = (n/N)*100 رابطه ۱ (۳) که در آن G درصد جوانه زنی، n تعداد نهایی بذرهای جوانه زده و N تعداد بذر های کشت شده میباشد. سرعت جوانه زنی بر حسب جوانه زنی نسبی در روز از رابطه ۲ محاسبه گردید. رابطه ۲ (۳ و ۷)

 $GR = x_1/y_1 + (x_2 - x_1)/y_2 + ... + (x_n - x_{n-1})/y_n$ که در آن GR سرعت جوانه زنی، x₁ تا x_1 درصد بذور جوانه زده در شمارش یکم تا n ام و y_n زمان از ابتدای کاشت تا شمارش n ام بر حسب روز است.

داده ها با استفاده از نرم افزار SPSS تجزیه شدند و مقایسه میانگین داده ها بر اساس آزمون چند دامنه ای دانکن و در سطح پنج درصد انجام شد.

نتايج و بحث

از آنجا که جوانه زنی غیر همزمان و در مدت طولانی تر، احتمال حمله بیماری های خاکزی به بذر و گیاهچه را افزایش و بنابراین سبب کاهش استقرار کامل گیاهچه می گردد، بایستی علاوه بر درصد جوانه زنی، به سرعت جوانه زنی و رشد گیاهچه نیز توجه خاصي مبذول نمود. نتايج تجزيه واريانس داده ها نشان داد سرعت جوانه زني و درصد نهايي جوانه زني بطور بسيار معني داری تحت تاثیر غلظت نمک قرار گرفتند (جدول ۱) و با افزایش شوری هر دو صفت روند کاهشی را نشان دادند (جدول ۲). کمترین کاهش سرعت جوانه زنی مربوط به تیمار ٤ دسی زیمنس بر متر بود که با تیمار شاهد اختلاف معنی داری نداشت و بیشترین مقدار کاهش سرعت جوانه زنی به تیمار ۱۶ دسی زیمنس بر متر تعلق داشت که نسبت به شاهد ۷۷/۲٪ کاهش نشان داد. کاهش درصد نهایی جوانه زنی (۳۸٪ نسبت به شاهد) تنها در غلظت ۱۶ دسی زیمنس بر متر معنی دار بوده و هیچ تفاوتی بین چهار غلظت دیگر مشاهده نشد (جدول ۲). بنابراین بر اساس نتایج بدست آمده می توان چنین استنباط نمود که درصد نهایی جوانه زنی در شرایط تنش شوری یکی از مقاومترین و سرعت جوانه زنی یکی از حساسترین اجزای جوانه زنی گیاه سیاه دانه در شرایط تنش شوری می باشد. یکی از مکانیسم های اثر شوری بر جوانه زنی، سمیت یونهایی همچون سدیم و کلر و بر هم زدن تعادل يوني از جمله نسبت پتاسيم به سديم مي باشد (٥). نتايج حاصل از تجزيه واريانس دادها نشان داد غلظت يونهاي معدني پتاسیم، سدیم و نسبت پتاسیم به سدیم نیز بطور بسیار معنی داری تحت تاثیر غلظت نمک قرار گرفتند (جدول ۱). مقایسه میانگین داده ها نشان داد با افزایش غلظت نمک به سطح ٤ دسی زیمنس بر متر غلظت یون پتاسیم بطور معنی داری نسبت به تیمار شاهد افزایش یافت و اگر چه با افزایش غلظت نمک به ۸ دسی زیمنس بر متر کاهش در غلظت یون پتاسیم مشاهده شد اما این غلظت یونی باز هم بیشتراز تیمار شاهد بود (جدول ۲). با افزایش تنش شوری به غلظت های بالاتر (۱۲ و ۱٦ دسی زیمنس بر متر) کاهش معنی داری در غلظت یون پتاسیم مشاهده گردید. به عبارتی این گیاه سعی نموده است با افزایش تجمع پتاسیم در برابر اثرات مضر تنش شوری مقاومت کند. اما با افزایش بیشتر غلظت نمک در محیط نتوانسته این مکانیسم را حفظ نماید. مقایسه میانگین غلظت سدیم در سطوح مختلف شوری حاکی از افزایش معنی دار ۷/۷ برابری یون سدیم در گیاهچه های تحت تنش شوری ١٦ دسي زيمنس بر متر نسبت به تيمار شاهد بود (جدول ٢). همچنين مقايسه ميانگين نسبت يون پتاسيم به سديم نشان داد با افزایش غلظت نمک این نسبت در گیاهچهها کاهش یافت و حتی در تیمار های ٤ و ٨ دسی زیمنس بر متر افزایش غلظت پتاسیم نتوانست افزایش غلظت سدیم در این تیمار ها را جبران نماید و این نسبت در همه تیمار ها کاهش معنی داری نشان داد (جدول ۲). به عبارت دیگر بیشترین مقدار این نسبت در تیمار شاهد و کمترین آن در تیمار ۱٦ دسی زیمنس بر متر مشاهده شد که علت این امر کاهش جذب پتاسیم در اثر رقابت با یون سدیم در محیط و افزایش غلظت یون سدیم در گیاه به دنبال افزایش غلظت این یون در محیط می باشد. یک اثر مهم افزایش شوری کاهش رشد رویشی می باشد. نتایج حاصل از تجزیه واریانس داده ها نشان داد طول ساقه چه بطور بسیار معنی داری تحت تاثیر غلظت نمک قرار گرفت (P<0/001). مقایسه میانگین داده ها با افزایش شوری به بالاترین سطح (16 dS/m) کاهش معنی دار ۵۲/۲ درصدی در طول ساقه چه نسبت به تیمار شاهد را نشان داد. همچنین نتایج حاکی از معنی دار بودن اثر غلظت نمک بر طول ریشه چه بود. مقایسه میانگین داده ها نشان داد که با افزایش شوری به dS/m ۸ طول ریشه چه به طور معنی داری کاهش یافت بطوریکه با افزایش غلظت نمک تا سطح IN dS/m طول ریشه چه کاهش ۵۰ درصد را در مقایسه با شاهد نشان داد. از آنجا که شوری از طریق افزایش فشار اسمزی و در نتیجه کاهش جذب آب و همچنین از طریق اثرات سمی یونهایی همچون سدیم و کلر جوانه زنی را تحت تاثیر قرار می دهد، کاهش شاخص های جوانه زنی مورد مطالعه را می توان به کاهش میزان و سرعت جذب اولیه آب و همچنین تاثیر منفی پتاسیل های اسمزی کم و سمیت یون ها بر فرایندهای بیوشیمیایی مراحل کاتابولیک (هیدرولیز آنزیمی مواد ذخیره ای بذر) و آنابولیک (ساخت بافتهای جديد با استفاده از مواد هيدرليز شده) در مرحله اول جوانه زني نسبت داد (٢).

وزن خشک ساقه چه و ریشه چه نیز به طور معنی داری تحت تاثیر سطوح مختلف شوری قرار گرفتند (جدول ۱). با افزایش شوری از صفر به ٤ و ۸ دسی زیمنس بر متر وزن خشک ساقه چه (مشابه طول ساقه چه) به طور غیر معنی داری افزایش پیدا کرد (جدول ۲)، این امر می تواند به علت افزایش غلظت یون پتاسیم در گیاهچه و در نتیجه افزایش طول ساقه چه که همراه با افزایش وزن خشک ساقه چه رفت ساقه چه با پتاسیم می تواند تاییدی بر این وزن خشک ساقه چه بود، باشد. وجود همبستگی مثبت و معنی دار وزن خشک و طول ساقه چه با پتاسیم می تواند تاییدی بر این مطلب باشد (جدول ۳). اما وزن خشک ریشه چه با افزایش شوری به ٤ دسی زیمنس بر متر بطور معنی داری کاهش یافت که مطلب باشد (جدول ۳). اما وزن خشک ریشه چه با افزایش شوری به ٤ دسی زیمنس بر متر بطور معنی داری کاهش یافت که مطلب باشد (جدول ۳). اما وزن خشک ریشه چه با افزایش شوری به ٤ دسی زیمنس بر متر بطور معنی دار وزن خشک نشان دهنده حساسیت بیشتر ریشه چه به ساقه چه در برابر افزایش شوری می باشد. وجود همبستگی منفی و معنی دار وزن خشک و طول ساقه چه با پتاسیم می تواند تاییدی بر این نشان دهنده حساسیت بیشتر ریشه چه با افزایش شوری به ٤ دسی زیمنس بر متر بطور معنی داری کاهش یافت که ریشه چه با غلظت یون سدیم می تواند نشان دهنده اثرات منفی تجمع یون سدیم بر وزن خشک ریشه چه به ترتیب ۲۸۸۲ ریشه چه با فلظت یون سدیم می تواند نشان دهنده اثرات منفی تجمع یون سدیم بر وزن خشک ریشه چه به ترتیب ۲۸۷۲. (جدول ۳). در نهایت با افزایش شوری به ۱۲ دسی زیمنس برمتر هر دو صفت وزن خشک ساقه چه و ریشه چه به ترتیب ۲۸۷۲. و ۲۰۲۸٪ نسبت به تیمار شاهد کاهش یافتند. با توجه به همبستگی مثبت و معنی دار وزن خشک ساقه چه با طول ساقه چه و وزن خشک ریشه چه با طول ساقه چه، می توان کاهش وزن خشک را به کاهش رشد و تقسیم سلولی در گیاهچه تحت شرایط تنش و حشک ریشه چه با طول ساقه چه در گیاهچه تحت شرایط تنش

نتیجه گیری کلی:با توجه به نتایج بدست آمده می توان اظهار داشت گیاه سیاه دانه در مرحله جوانه زنی تا شوری ۱۲ دسی زیمنس را تحمل می نماید و کاهش در درصد جوانه زنی مشاهده نخواهد شد، اگرچه با تاخیر در جوانه زنی روبرو خواهد شد. از نظر رشد گیاهچه ای نیز مقاومت ساقه چه بیشتر بوده و به ترتیب تا غلظت های ۸ و تا ۱۲ دسی زیمنس کاهش معنی داری در وزن خشک و طول ساقه چه نشان نخواهد داد و علت این امر وجود مکانیسم تجمع یونهای پتاسیم در اندام گیاهی می باشد.

منابع

- ١٣٦٨ ع. ١٣٦٨. گياهان دارويي. جلد اول . انتشارات دانشگاه تهران صد ٤٤-٤٣.
- ۲- زینلی، ۱.، ۱. سلطانی و س. گالشی. ۱۳۸۱. واکنش اجزای جوانه زنی بذر به تنش شوری در کلزا. مجله علوم کشاورزی
 ایران . ۳۳ (۱): ۱۳۷–۱٤٥.
- ۳- قوامی، ف. م.ع. ملبویی، م. ر، قنادها، ب. یزدی صمدی، ج. مظفری و م. جعفرآقایی. ۱۳۸۲. بررسی واکنش ارقام متحمل
 گندم ایرانی به تنش شوری در مرحله جوانه زنی و گیاهچه . مجله علوم کشاورزی ایران ۳۵ (۲): ٤٥٣-٤٦٤.
- ٤- مجنون حسینی، ن.، س. داوزده امامی. ١٣٨٦. زراعت و تولید برخی گیاهان دارویی و ادویه ای. انتشارات دانشگاه تهران.
 ص. ٣٠٠.
- ۵- میر محمدی میبدی، س. غ. و ب. قره یاضی. ۱۳۸۲. جنبه های فیزیولوژیک و بهنژادی تنش شوری گیاهان . مرکز نشر دانشگاه صنعتی اصفهان.
 - 6- Kamkar, B., M. Kafi and M. Nassiri mahallati. 2004 determination of the most sensitive developmental period of wheat (triticum aestivum) to salt stress to optimize saline water utilization. 4th International Crop Science Congress, PP.1-6.
 - 7- Maguire, J. D. 1963. Speed of germination aid in selection and evaluation for seeding and vigor.

Effect of Salinity stress on germination, Seedling growth and Ion relation of Black cumin

Abstract.

General Responses to salt stress were investigated in Black cumin (*Nigella sativa*). Seeds were treated with aqueous solutions of 0, 4, 8, 12 and 16 dsm⁻¹ NaCl. Variance analysis showed that seed germination, Rate of germination, root and shoot length, root and shoot weight, Na⁺, K⁺ concentration and Na⁺/K⁺ were strongly affected with increasing salinity. Increasing salinity was accompanied with significantly decreasing in all germination traits except Na⁺, K⁺ concentration which was highest in control and lowest in 16 dsm⁻¹. Na⁺ concentration was increasing in root and shoot only until 8 dsm⁻¹. It seems that in germination stage, Black cumin can endurance salinity between -8 to 12 dsm⁻¹ salinity, although it was experienced delay in germination in this condition and probably this resistance would be due K⁺ accumulation ability of this plant in shoot.