بررسی خفتگی بذر در محیط در شیشه با استفاده از تیمارهای خراش دهی و تنظیم کننده رشدGA3 در زنبق بومی ایران .Iris songarica L

حمید رضا بیات (۱)، مصطفی عرب (۱)، مرتضی خوشخوی (۲)، روح اله حیدری هایی (۱)، وحید رحیمی (۱) ۱- گروه علوم باغبانی، پردیس کشاورزی ابوریحان، دانشگاه تهران، ۲- بخش علوم باغبانی، دانشکده کشاورزی، دانشگاه شیراز

خفتگی در بذر زنبق با تیمار های خراش دهی و کاربرد مواد شیمیایی بررسی شد. خراش دهی با کاغذ سنباده به مدت ۵ دقیقه با دقت و مواظبت از رویان و غوطه وری در سولفوریک اسید ۹۸٪ به مدت ۳۰ دقیقه انجام شد، سپس بذر های خراش داده شده و بدون خراش پس از گند زدایی به محیط کشت MS (موراشیگی و اسکوگ ۱۹٦۲) حاوی (۰، ۱/٤٤، ۲/۸۹ و ۲/۳۳ میکرومول در لیتر) جیبرلیک اسید (GA3) انتقال داده شده و در محیط با نور ۵۰ میکرومول بر متر مربع بر ثانیه اتاقک رشد در دمای ۲±٥۲ درجه سانتیگراد نگهداری شدند. نتایج نشان داد که خفتگی با خراش دهی مکانیکی پس از گذشت چهار هفته شکسته شد، و بهترین سطح تنظیم کننده رشد ۱/٤٤ میکرومول بر لیتر بود. بذر های بدون خراش دهی و خراش دهی شیمیایی تندش بسیار پایینی داشتند (به ترتیب ۵ و ۲۳٪)، در حالی که بذر های خراش داده شده در تیمار ۱/٤٤ میکرو مول GA3 تا ۲۰۷٪

مقدمه

Iris songarica شامل بیش از ۳۰۰ گونه می باشد که دارای ارزش باغبانی و دارویی هستند Iridaceae می د. 2. گیاهی است به ارتفاع ۵۰ سانتیمتر، این گونه به صورت دسته های بزرگی رشد می کند که گاهی قطر آن به ۵۰ سانتیمتر می رسد. برگ های باریک چرمی و بادوام و افراشته آن که تا ۲/۵– ۱/۵ میلی متر عرض دارند. بذر بیشتر گونه های گیاهی مناطق معتدله دارای خفتگی هستند و تندش آن ها تنها با گذراندن شرایط محیطی مانند برطرف شدن مواد شیمیایی بازدارنده تندش، نور و مواد غذایی امکان پذیر می باشد. این علائم سطوح GA و ABA در بذر را کنترل می کنند. که این هورمون ها خفتگی و تندش را منظم می کنند. بذر زنبق نیز در شرایط طبیعی دارای تندش پایینی می باشد(سوون سی^۱، ۲۰۰۳). استفاده از محیط درون شیشه ای جهت بررسی خفتگی بذر در گزارش های زیادی آمده است(کی هی یانگ^۲، ۲۰۰۷).

مواد و روش ها

بذر های زنبق به مدت ۲۵ ساعت در آب مقطر خیسانده شده سپس خراش دهی مکانیکی و شیمیایی انجام شد در خراش دهی مکانیکی بذر ها به مدت ۵ دقیقه بین دو لایه کاغذ سنباده خراشیده شدند، و پوسته بذر به طور کامل برداشته شد. در خراش دهی شیمیایی بذر ها به مدت ۳۰ دقیقه در سولفوریک اسید ۹۸٪ خیسانده شدند، بذر های تیمارهای مختلف (سولفوریک اسید ، خراش دهی مکانیکی و کنترل) به محیط کشت MS (موراشیگی و اسکوگ⁷، ۱۹۶۲) حاوی(۰، ۱/٤٤، ۲/۸۹ و ۲/۸۳ میکرومول در

¹. Sun *et al.*

². Qi-He Y. *et al*

لیترGA3) منتقل شدند . آزمایش به صورت فاکتوریل در قالب طرح کاملاً تصادفی با چهار تکرار انجام گرفت و نتایج به دست آمده در نرم افزار SAS و Excel تجزیه و با استفاده از آزمون LSD در سطح ۵٪ مقایسه میانگین ها صورت گرفت.

نتايج و بحث

پس از گذشت چهار هفته نتایج نشان داد که خفتگی با خراش دهی مکانیکی شکسته شد، اما خراش دهی شیمیایی موثر نبود (میانگین تندش۳۳٪)، بذر های بدون خراش دهی تندش بسیار پایینی داشتند (حدود ٥٪). بهترین سطح تنظیم کننده ۱/٤٤ میکرومول بر لیتر محیط بوده است که با سه سطح دیگر اختلاف معنی دار داشت . بذرهای خراش داده شده در تیمار ۱/٤٤ میکرو مول GA3 تندش تا ۸٤٪ مشاهده شد . کی هی یانگ، ۲۰۰۷ گزارش داد غوطه وری بذرهای مواند ده شده در تیمار ۲۶ ساعت در ۲۰۰ پی پی ام GA3 باعث بهبود تندش شد و بیان کرد GA3 در بذرهای نیازمند به سرما می تواند جایگزین سرما شود بذر بیشتر گونه های زنبق نیز به گذراندن یک دوره سرمایی مرطوب می باشند(سوون سی^۱، ۲۰۰۳). در این پژوهش مشخص شد که پوسته سخت بذر زنبق یک عامل خفتگی می باشد، طبق گزارش کی هی یانگ (۲۰۰۷) خراش دهی مکانیکی جهت شکستن خفتگی بذر *Areca triandra* در این پژوهش می باشد و این پژوهش مشخص شد که پیشنهاد می شود از تیمارهای تنیجه بهتری نسبت به تیمار های شیمیایی داشته است. با توجه به نتایج حاصل در این پژوهش

منابع

Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol.15:479-473.

Qi-he, Y. Wan-hui, Y. & Xiao-juan, Y. (2007). Dormancy and germination of *Areca triandra* seeds. Sci. Hort. 113:107–111.

Lenz, L.W. (1978). Iris classification. In Warburton B (Ed) The World of Irises. The American Iris Society, Wichita, Kansas. USA:1-42.

Sun, Y. C., Zhang Y. J., Wang K. & Qiu, X. J. (2006). NaOH scarification and stratification improve germination of *Iris lactea* var. *chinensis* seed. HortSci. 41:773-774.

¹ . Sun Y. C. *et al.*

Study of Scarification and GA₃ Treatment for Breaking Dormancy in Iranian *Iris (Iris songarica* L.) in vitro culture

H. Bayat¹, M. Arab¹, M. Khosh-Khui², R. Heidarihaee¹ & V. Rahimi¹

 Department of Horticultural Sciences, College of Abooraihan, University of Tehran, Tehran, Iran
Department of Horticultural Sciences, College of Agriculture, Shiraz University, Shiraz, Iran tell:09360379639<u>hbayat@ut.ac.ir</u> E-mail:

Abstract

The dormancy mechanisms of *Iris Songarica* L. seeds were studied by treating the seeds with sand paper scarification for 5 min by careful removing seed coat without damaging the embryos and chemical soaking in 98% H₂SO₄ for 30 min. Sterilized intact and scarified seeds were transfered to Murashige & Skoog (MS) medium supplemented with (0, 1.44, 2.89, 4.33 μ molL⁻¹) gibberellic acid (GA₃) and were kept under continuous 50 μ molm⁻²s⁻¹ fluorescent light in growth chamber at a 16-h photoperiod and 25 ±2°C. After 4 weeks, the mechanical dormancy was broken but chemical scarification had no effect on breaking dormancy. Results of this investigation showed that mechanically scarified seeds in 1.44 μ molL⁻¹ GA₃ increased germination percentages by 70%.

Keywords; Iris songarica L., seed dormancy, scarification, GA3.