O-13 (141) STUDY OF THE RESPONSES OF TOMATO PLANT TO AMMONIUM AND NITRATE NUTRITION USING THE RELATIVE ADDITION RATE TECHNIQUE

Prof. Dr. Hamid Reza Roosta, Vali-E-Asr University of Rafsanjan, Faculty of Agriculture, Department of Horticulture, 7718816617 Rafsanjan, Iran; <u>roosta_h@yahoo.com</u> (Presenting author)

Prof. Dr. JanK. Schjoerring, Faculty of Life Sciences, Plant and Soil Science Laboratory, Copenhagen University, Copenhagen, Denmark; <u>jks@plen.ku.dk</u>

Different N sources (NO₃⁻, NH₄⁺, or NH₄NO₃) at relative addition rate (RAR) of 0.25 day⁻¹ were supplied to tomato (*Lycopersicom esculentum* Mill.), a species sensitive to NH₄⁺ toxicity. At RAR 0.25 day⁻¹ growth reduction occurred by NH₄⁺ application, slightly. Tomato roots had a more efficient NH₄⁺ assimilation than shoots when N was supplied solely in the form of NH₄⁺, and dominant amino acids in tomato were glutamine and asparagine. Low tissue levels of calcium and magnesium in the NH₄⁺-fed plants constituted part of the NH₄⁺-toxicity syndrome. The supply of NO₃⁻ led to the accumulation of Fe in tomato roots, but leaves Fe concentration in NO₃⁻ -fed plants was low in comparison to NH₄⁺ supply. It is concluded that due to high sensitivity of tomato to NH₄⁺, even at RAR 0.25 day⁻¹ the relative addition rate technique was not able to reduce deleterious effects of NH₄⁺ in tomato plants.

Keywords: Amino acid, ammonium, Lycopersicon esculentum, nitrate, relative addition rate technique